Susanne Klemm (Hg.)

Der bronzezeitliche Kupferschmelzplatz S1 in der Eisenerzer Ramsau, Steiermark (Österreich)

Archäologische Erforschung und interdisziplinäre Untersuchung einer ostalpinen Kupferhütte

> Dieses Werk ist nicht im Buchhandel erhältlich, steht aber im Sinne des open access kostenlos online unter <u>www.hlk.steiermark.at</u> zur Verfügung.

> > Version 1 - Juni 2021

Graz 2021

Im Selbstverlag der Historischen Landeskommission für Steiermark

Die Realisierung dieser Publikation wurde durch Mittel des Bundesdenkmalamtes und des Landes Steiermark ermöglicht.

Version 1 – Juni 2021

Graz 2021

Im Selbstverlag der Historischen Landeskommission für Steiermark 8010 Graz, Karmeliterplatz 3 www.hlk.steiermark.at

Satz: Gerhard Gauster, Graz

Die Herausgabe dieser Veröffentlichung erfolgt ohne wirtschaftliche Gewinnabsicht, sondern vielmehr im Sinne der in den Statuten der Historischen Landeskommission für Steiermark festgelegten wissenschaftlichen Aufgaben.

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten.

ISBN 978-3-901251-56-6

Forschungen zur geschichtlichen Landeskunde der Steiermark

Herausgegeben von der Historischen Landeskommission für Steiermark

Band 91

Inhaltsverzeichnis / Table of Contents

Bernhard Hebert Vorwort	7
Susanne КLEMM Vorwort der Herausgeberin / Foreword by the editor	9
Susanne Кlemm Danksagung / Acknowledgments	11
Susanne Клемм 1 Einleitung / Introduction	17
 Susanne KLEMM Der Kupferschmelzplatz S1 in der Eisenerzer Ramsau – Fundort und Fundgeschichte / The Copper Smelting Site S1 in the Valley of the Eisenerzer Ramsau – Site and Site History 	21
 Susanne KLEMM, mit Beiträgen von Georg WALACH[†], Hassan NEINAVAIE und Anton DRESCHER Naturwissenschaftliche Untersuchungen vor Beginn der archäologischen Ausgrabung auf dem Kupferschmelzplatz S1: Geophysikalische, mineralogisch-geochemische und botanische Untersuchungen / 	
Scientific Investigations prior to the Archaeological Excavation at the Copper Smelting Site S1: Geophysical, Mineralogical-geochemical and Botanical Investigations	29
Anhang (Kap. 3): Beilage zu den mineralogisch-geochemischen Untersuchungen /	_,
Supplement to the Mineralogical-geochemical Investigations	51
 Susanne KLEMM Der bronzezeitliche Kupferschmelzplatz S1 in der Eisenerzer Ramsau – Überblick über den archäologischen Befund und erste Ergebnisse / The Bronze Age Copper Smelting Site S1, Eisenerzer Ramsau – Overview of the Archaeological Features and First Results 	102
 Christina REISCH und Karin GRUBER Makroskopische Gesteinsbestimmung des Baumaterials von Röstbetten und Schmelzöfen des Kupferschmelzplatzes S1 in der Eisenerzer Ramsau / Macroscopic Rock Identification of the Building Materials for the Roasting Hearths and Smelting Furnaces of the Copper Smelting Site S1 	108
 Steffen KRAUS und Ernst PERNICKA Ontersuchungen der archäometallurgischen Funde vom Kupferschmelzplatz S1 / Archaeometallurgical Analyses of Slags and Other Finds of the Copper Smelting Site S1 Anhang (Kap. 6): Beilage zu den archäometallurgischen Untersuchungen / Supplement to the Archaeometallurgical Analyses 	124 211
Erich PUCHER und Mona Abd EL KAREM 7 Die Tierknochen vom Kupferschmelzplatz S1 / Animal Bone Finds of the Copper Smelting Site S1	303
 Susanne KLEMM Bibliographie zu den interdisziplinären Untersuchungen auf dem Kupferschmelzplatz S1 in der Eisenerzer Ramsau, Steiermark / Bibliography on the Interdisciplinary Research at the Copper Smelting Site S1, 	
Eisenerzer Ramsau	315
Verzeichnis der Autorinnen und Autoren / List of Authors	320

Susanne Klemm, mit Beiträgen von Georg Walach†, Hassan Neinavaie und Anton Drescher

3 Naturwissenschaftliche Untersuchungen vor Beginn der archäologischen Ausgrabung auf dem Kupferschmelzplatz S1: Geophysikalische, mineralogisch-geochemische und botanische Untersuchungen

Die erste Maßnahme nach der Entdeckung des Fundplatzes durch Horst Weinek, Berginspektor i. R., Eisenerz, im Jahr 1991 war eine geophysikalische Vermessung durch Georg Walach sen., Montanuniversität Leoben. Vor Grabungsbeginn im Sommer 1992 folgte die geodätische Vermessung des Kupferschmelzplatzes S1 durch Erich Salzer, VOEST Alpine Erzberg GmbH und Johann Resch¹, die vom damaligen, sich gerade konstituierenden Kulturverein Innerberger Forum in Auftrag gegeben wurde (Abb. 3.1 und 3.2). Die Organisation der Ausgrabung ab 17. August 1992 erfolgte durch Horst Weinek und der Grabungsleiterin Susanne Klemm.

Zu Grabungsbeginn, dem 17. August 1992, wurde das Areal in Quadranten im Ausmaß von 5 x 5 m gegliedert, die Eckpunkte mit Nägeln auf Holzpflöcken markiert und von Johann Resch eingemessen. Die Eckpunkte der geophysikalischen Vermessung wurden gleichfalls eingemessen (vgl. Kap. 3.1 mit Abb. 3.3).

Im Zuge der geodätischen Vermessung wurde auch der aktuelle Baumbestand eingemessen und durchnummeriert (vgl. Kap. 3.3, Abb. 3.20 und 3.21). Mit der geophysikalischen Vermessung wurde Georg Walach sen., Montanuniversität Leoben, beauftragt. Diese führte Georg Walach jun. am 12. Juli 1992 durch (vgl. Kap. 3.1). Die Ergebnisse der geophysikalischen Prospektion dienten nicht nur als Grundlage für die botanische Probennahme zur Untersuchung der Schwermetallbelastung der aktuellen Vegetation von Anton Drescher (vgl. Kap. 3.3)², Graz, sondern auch für die Entnahme von Bodenprofilen, die Max Eisenhut³, damals Bundesanstalt für Bodenwirtschaft, mit Unterstützung von Thomas Umfer im Auftrag der VOEST Alpine Eisenerz/Geotechnik durchführte (vgl. Kap. 3.2). Letztere wurden von Gerhard Sperl, Institut für Festkörperphysik der Österreichischen Akademie der Wissenschaften, Leoben, beauftragt.

Nach Auflösung der VOEST Alpine Erzberg/ Abteilung Geotechnik wurde die Bearbeitung von der Fa. Umweltgeologie-Geoökologie, Dr. Herbert Pirkl, Eisenerz/Wien⁴ weitergeführt. Es sollten die einzelnen Bodenschichten der Bohrprofile bodenund gesteinsgeochemisch beschrieben werden. Diese Untersuchungen hatten zum Ziel, die Schwermetallbelastung des Bodens durch die prähistorische Kupfererzverhüttung zu beschreiben. Parallel dazu wurden 1992/1993 erste mineralogische Untersuchungen von Kupferschlacken und Gesteinen aus der Grabungsfläche sowie von einem Kupfererzstück vom Steirischen Erzberg vorgenommen. Diese Analysen führte der Mineraloge Hassan Neinavaie, Mitarbeiter der Fa. Geoöko, durch (vgl. Kap. 3.2).⁵

¹ Obermarkscheider Ing. Johann Resch, Leoben. Johann Resch war in seiner aktiven Zeit als Markscheider bei der VOEST Alpine Erzberg GmbH tätig.

² Vgl. Kap. 3.3 und ausführlich in Drescher 2004.

³ Dr. Max Eisenhut, Bundesanstalt für Bodenwirtschaft, das 1994 als Institut für Bodenwirtschaft in das neu errichtete Bundesamt und Forschungszentrum für Landwirtschaft eingegliedert wurde, welches 2002 zur Abteilung Landwirtschaftlicher Boden dem Institut für Waldökologie und Boden des BFW wurde. – Zur Person Dr. Maximilian Eisenhut (1936–1995) vgl. den Nachruf von SCHNEIDER 1995, 7f.

⁴ Umweltgeologie-Geoökologie, 1180 Wien / Wiss. ARGE Geochemie, 8790 Eisenerz, Dr. Herbert Pirkl.

⁵ H. NEINAVAIE, Bericht über bodenchemisch-mineralogische Untersuchungen im Bereich eines Kupferschmelzplatzes in der Eisenerzer Ramsau, September 1993. Umweltgeologie-Geoökologie, 1180 Wien / Wiss. ARGE Geochemie, 8790 Eisenerz, Dr. Herbert Pirkl. (Archiv S. Klemm)

Abb. 3.1: Kupferschmelzplatz S1, Eisenerzer Ramsau. Höhenmodell. Geodätische Vermessung, E. Salzer, J. Resch1992.Kartengrundlage: Vermessung VA Erzberg GmbH; Grafik: S. Klemm, U. Schuh

Fig. 3.1. Copper Smelting Site S1, Eisenerzer Ramsau. Elevation model. Survey by E. Salzer, J. Resch 1992. Map: Survey VA Erzberg GmbH; plan: S. Klemm, U. Schuh

Abb. 3.2: Kupferschmelzplatz S1, Eisenerzer Ramsau. Geodätische Vermessung mit Johann Resch, links im Bild
und Mitarbeitern der VOEST Alpine Erzberg GmbH, 1992.Foto: S. KlemmFig. 3.2. Copper Smelting Site S1, Eisenerzer Ramsau. Survey with J. Resch (left) and colleagues from VOEST
Alpine Erzberg GmbH, 1992.Photo: S. Klemm

Georg WALACH sen. †

3.1 Geophysikalische Prospektion vor Grabungsbeginn 1992

Auf dem Kupferschmelzplatz S1 wurden hochauflösende geophysikalische Detailmessungen durchgeführt.⁶ Dabei kam neben der Geomagnetik auch eine hochauflösende Elektromagnetik zur Anwendung. Der Plan des geomagnetischen Störfeldes (Messpunktraster 1 x 1 m) wird in Abbildung 3.4 dargestellt.⁷ Trotz der schematisierten-plakativen Darstellungsart waren die Positionen von einem Teil der später untersuchten Objekte der Kupfererzverhüttung auf dem Kupferschmelzplatz S1 deutlich anhand der Gelb- und Rottöne ersichtlich (vgl. dazu Kap. 4). Es wurden geomagnetische und geoelektrische Anomalien, wie sie für prähistorische Kupferschmelzplätze in den Eisenerzer Alpen bereits seit 1979 und vor allem in den frühen 1980er Jahren charakteristisch waren, erfasst (Abb. 3.3–Abb. 3.5).⁸

⁶ Univ.-Doz. Dr.mont. Georg Walach, Institut für Geophysik, Montanuniversität Leoben, Geophysikalische Untersuchungen zur urzeitlichen Kupfergewinnung in der Eisenerzer Ramsau, Stmk., Zusammenfassender Bericht 1992–1995. Leoben im Februar 1996. Der Bericht war gerichtet an: Kulturverein Innerberger Forum, Schulgasse 1, A-8790 Eisenerz, insbesondere S. 9, Beilagen 9 und 10. (Archiv S. Klemm). Zur Person von G. Walach sen. siehe den Nachruf: N. N., Triple-M, Zeitschrift der Montanuniversität Leoben (1/2011), 13.

⁷ Kopien der Geomagnetik, vgl. Abb. 3.3 und 3.4 im Text, wurden der Grabungsleiterin übergeben. Der Plan des geomagnetischen Störfeldes (Messpunktraster 1 x 1 m) entstammt dem Bericht von G. WALACH sen. 1996.

⁸ Z. B. WALACH 1979 (BHM 124/8, 1979, 388); weitere Literatur in KLEMM 2003, 160f.

Abb. 3.3: Kupferschmelzplatz S1, Eisenerzer Ramsau. Geomagnetisches Anomaliefeld (nT) bezogen auf 47500 nT.Messung 12. Juli 1991.Grafik: G. Walach sen. †

Fig. 3.3. Copper Smelting Site S1, Eisenerzer Ramsau. Geomagnetic anomaly field (nT) referenced on 47500 nT. Geophysical survey 12. Juli 1991. Graphic: G. Walach sen.†

Abb. 3.4: Kupferschmelzplatz S1, Eisenerzer Ramsau. Magnetischer Störgradient (nT/m). Messung 12. Juli 1992. Grafik: G. Walach sen. †

Fig. 3.4. Copper Smelting Site S1, Eisenerzer Ramsau. Magnetic gradient of perturbation (nT/m). Survey 12. Juli 1992. Graphic: G. Walach sen.†

Abb. 3.5: Kupferschmelzplatz S1, Eisenerzer Ramsau. Übersichtsplan mit Geomagnetfeld, Höhenmodell und Quadrantennetz. Plan: S. Klemm, U. Schuh

Fig. 3.5. Copper Smelting Site S1, Eisenerzer Ramsau. General plan with geomagnetic field, elevation model and net of quadrants. Plan: S. Klemm, U. Schuh

Hassan Neinavaie

3.2 Mineralogisch-geochemische Untersuchungen und Probennahme von Bodenprofilen vor Grabungsbeginn 1992

Ziel der Untersuchungen war es, durch Spurenelemente von Kupferschlacken des Kupferschmelzplatzes S1 in der Eisenerzer Ramsau und Erzminerialien Hinweise zur Herkunft des Ausgangserzes zur Kupfergewinnung zu erhalten. Als primäres Kupfererz wurde vorerst die Fahlerz-Kupferkiesmineralisation aus dem Bergbaurevier Steirischer Erzberg herangezogen.

Anhand der Bodenprofile vor Beginn der Grabungsarbeiten konnten nicht nur Probenmaterial fürdiemineralogisch-geochemischen Untersuchungen, sondern bereits erste Indizien für die Mächtigkeit der archäologischen Schichten gewonnen werden.

3.2.1 Probennahme vor Grabungsbeginn und Ziel der geochemischen Untersuchungen

Vor Grabungsbeginn wurden am 17. August 1992 im Bereich des Kupferschmelzplatzes S1 in der Eisenerzer Ramsau, Steiermark, drei Bodenprofile mittels Hohllochbohrer gewonnen. Ein viertes Profil wurde knapp außerhalb als Vergleichspunkt beprobt. Die Proben wurden von Dr. Max Eisenhut[†], Institut für Bodenwirtschaft, unter Mitarbeit von dem damaligen Studenten der Geologie Thomas Umfer und in Begleitung der Grabungsleiterin Susanne Klemm entnommen (Abb. 3.6 und 3.7, Anhang 1, Abb. 3.8 bis 3.18).

Ziel der geochemischen Untersuchungen bzw. der für alle Bodenhorizonte ausgeführten Multielementanalytik war die Charakterisierung einerseits der beginnenden Bodendynamik auf diesen Kultursubstraten und andererseits die Schwermetallgehalte und -verteilungen (Anhang 1; Abb. 3.8 bis 3.11).

Neben den Bodenprofilen wurden auch zwei Kupferschlacken in die Analytik einbezogen. Als primäres Kupfererz wurde eine Probe der Fahlerz-Kupfermineralisation aus dem Bergbaurevier Steirischer Erzberg herangezogen.⁹

Die in diesem Beitrag vorgelegten Arbeiten umfassen die Beschreibung der Beprobung von vier relevanten Bodenprofilen (vgl. Anhang 1: Bodenprofil 1, 920501–920507; Bodenprofil 2, 920514– 920518; Bodenprofil 3, 920526–920531; Bodenprofil 4, 920538–920541):

Abb. 3.6: Beprobung eines Bodenprofils in Quadrant 10. Foto: S. Klemm Fig. 3.6. Sampling of a soil profile in quadrant 10. Photo: S. Klemm

⁹ Es soll hier angemerkt werden, dass für eine definitive Aussage über die Herkunft des Erzmaterials für den Verhüttungsprozess auf dem Kupferschmelzplatz S1 weitere Untersuchungen an verschiedenen Kupfererztypen der näheren Umgebung des Schmelzplatzes nach wie vor notwendig wären.

Abb. 3.7: Kupferschmelzplatz S1. Übersichtsplan zur Probennahme. Lage der Bodenprofile 1–4 (Probenpunkte 920502, 920515, 920526, 920539).

Plangrundlage geomagnetische Vermessung v. G. Walach und Höhenmodell; Grafik: S. Klemm, U. Schuh

Fig. 3.7. Copper Smelting Site S1. General Plan of Sampling. Samples 1–4 (point numbers 920502, 920515,
920526, 920539).Plan: geomagnetic survey by G. Walach and elevation model; plan: S. Klemm, U. Schuh

- die Bearbeitung der Geländebodenbeschreibungen nach international verwendetem FAO-Standard (vgl. Anhang 1)
- die Multielementanalytik an 23 Bodenproben und 8 Gesteins- und Schlackenproben (vgl. Anhang 1)
- die mineralogische Phasenanalytik an ausgewählten Boden- und Gesteinsproben (vgl. Kap. 3.2.2.1)
- die Auswertung der Analytik sowie ein erster Versuch einer Zuordnung zu bekannten lokalen Mineralisationen (vgl. Tab. 3.2 bis 3.7).

3.2.2 Auswertung und Interpretation

3.2.2.1 Mineralphasenuntersuchungen

Zur Identifizierung der Mineralphasen wurden neben mikroskopischen Untersuchungen (im Durchund Auflicht) auch Röntgendiffraktometrie herangezogen. Die Spurenelementgehalte der festgestellten Mineralphasen wurden anschließend mittels Elektronenstrahlmikrosonde semiquantitativ und quantitativ an der Montanuniversität Leoben/Institut für Mineralogie und am Institut für Mineralogie der Universität Innsbruck untersucht.

Die sehr heterogen aufgebauten Schlacken – stückige Schlacke und in Bodenproben festgestellte Schlackenkomponenten weisen dieselbe Zusammensetzung auf – sind aus folgenden Mineralphasen aufgebaut (Tab. 3.1):

In den Abbildungen 3.8 und 3.9 werden einige der Mineralphasen dargestellt. Bornit, Kupferkies sowie z. T. auch Kupferglanz bilden hier wahrscheinlich das primäre Ausgangserz. Die Kupferminerale, insbesondere metallisches Kupfer, weisen nicht selten auch einen geringeren Gehalt bis Spuren von As, Sb, Co, Zn und Ni auf (siehe Abb. 3.10 bis 3.16, Tab. 3.2 bis 3.4).

Tab. 3.1: Mineralphasen in stückiger Schlacke und in Bodenproben festgestellte Schlackenkomponenten. Tab. 3.1. Mineral phases in slag pieces and slag components of soil samples.

Mineralphasen in stückiger Schlacke und in Bodenproben festgestellte Schlackenkomponenten	Mineral phases in slag pieces and slag components in soil samples
Metallisches Kupfer (mit 0.3–0.4 % As, 0.8 % Ni)	Metallic copper (with 0.3–0.4 % As, 0.8 % Ni)
Kupferglanz	Chalcocite
Cuprit	Cuprite
Bornit (Buntkupferkies)	Bornite
Kupferkies (primär sowie als Einschlüsse in Magnesioferrit)	Chalcopyrite (primary as well as inclusion in magnesioferrite)
(Fe,Cu)Oxyd ("Delafossit")	(Fe,Cu)Oxide ('Delafossite')
Magnetit und Cuprospinell	Magnetite and Cuprospinel
Hämatit (in Schlacken, Werferner Schiefer und Hämatitderberz)	Hematite (in slags, Werfener shist and hematite ore)
Wüstit	Wüstite
Magnesioferrit (mit Spuren von Zn und Ni)	Magnesioferrite (with traces of Zn and Ni)
Olivinmischkristalle – Fayalit und Monticellit	Olivine solid solutions – Fayalite and Monticellite
im Saumbereich)	CuO in the edges)
Hedenbergit	Hedenbergite
Baryt (in Schlacken sowie in Hämatitderberz)	Baryte (in slags as well as in hematite ore)
Sekundäre Cu- und Fe-Minerale wie Malachit, Azurit, Eisenhydroxyde mit bis 1.9% CuO und "Chrysokoll"	Secondary Cu and Fe minerals such as malachite, azurite, iron hydroxides with up to 1.9 % CuO and "chrysocolla"
Glasphase (häufig mit bis 2.5 % CuO, P, Cl, S,K, Mn, Ba, Ti)	Glass phase (often contains up to 2.5 % CuO, P, Cl, S, K, Mn, Ba, Ti)
Quarz, Feldspat und sehr häufig auch Holzkohle	Quartz, feldspar and very frequently charcoal

Abb. 3.8: Metallisches Kupfer (1) mit Cupritsaum (3), Kupferglanz (2) sowie skelettartige Magnetitkristalle (4) in silikatischer Grundmasse (schwarz). Probe 91EE-1, Kupferschlacke. Kupferschmelzplatz S1. Polierter Dünnschliff, Nicols parallel, Marke = 0,5 mm, Ölimmersion. Foto: H. Neinavaie Fig. 3.8. Metallic copper (1) surrounded by cuprite (3), chalcocite (2) and magnetite crystals (4) in silicate

Fig. 3.8. Metallic copper (1) surrounded by cuprite (3), chalcocite (2) and magnetite crystals (4) in silicate matrix (black). Sample 91EE-1, copper slag. Copper Smelting Site S1. Polished thin section, parallel Nicols, scale = 0.5 mm, oil immersion.

Abb. 3.9: Delafossit (D) als Saum um "Cuprospinell" (Cs) und als leistenförmige Kristalle. Grundmasse bestehtaus kristallinen und glasigen Silikatphasen. Probe 920845 Kupferschlacke, Kupferschmelzplatz S1 (FNR 68,Qu 8). Polierter Dünnschliff, Nicols parallel, Marke = 0.05 mm, Ölimmersion.Foto: H. Neinavaie

Fig. 3.9. Delafossite (D) appears around 'Cuprospinel' (Cs) and as lath-shaped crystals. The matrix are crystalline and glassy silicate phases. Sample 920845 copper slag, Copper Smelting Site S1 (FNR 68, Qu 8). Polished thin section, parallel Nicols, mark = 0.05 mm, oil immersion.

38

Abb. 3.10: Semiquantitative Analyse von metallischem Kupfer mittels Mikrosonde (energiedispersives Analysensystem). Probe 1EE-1, Kupferschlacke. Kupferschmelzplatz S1.

Fig. 3.10. Semiquantitative analysis of metallic copper using microprobe (energy dispersive analysis system). Sample 1EE-1, copper slag. Copper Smelting Site S1.

Tab. 3.2: Chemische Zusammensetzung des metallischen Kupfers (Mikrosondenanalytik). Probe 1EE-1, Kupferschlacke.

Tab. 3.2. Chemical composition of metallic copper (microprobe analytics). Sample 1EE-1, copper slag. Copper Smelting Site S1.

Element	0	Cu	As	Sb	Ni	Fe	Mn	Со	S	Total
Wt %	0.33	97.75	0.41	0.11	0.73	0.12	0.00	0.00	0.55	100.01

Abb. 3.11: Semiquantitative Analyse von Cuprit mittels Mikrosonde (energiedispersives Analysensystem). Probe 1EE-1, Kupferschlacke. Kupferschmelzplatz S1.

Fig. 3.11. Semiquantitative analysis of cuprite using microprobe (energy dispersive analysis system). Sample 1EE-1, copper slag. Copper Smelting Site S1.

Tab. 3.3. Chemical composition of cuprite (microprobe analytics). Sample 1EE-1, copper slag. Copper Smelting Site S1.

Element	0	Cu	As	Sb	Ni	Fe	Mn	Со	S	Total
Wt %	11.67	88.18	0.00	0.00	0.33	0.64	0.00	0.00	0.18	101.00

Abb. 3.12: Semiquantitative Analyse von Kupferglanz mittels Mikrosonde (energiedispersives Analysensystem). Probe 1EE-1, Kupferschlacke. Kupferschmelzplatz S1.

Fig. 3.12. Semiquantitative analysis of chalcocite using microprobe (energy dispersive analysis system). Sample 1EE-1, copper slag. Copper Smelting Site S1.

Pio A	neer D VFS:	isplay - 19000	Spectrum	1		Livetime: Deadtime:	100 51%
/lin	C Cu Fe					Journal	
ŧ							
X		s					
M	,0,		Fe	Cu Ee Cu	u		
	0.000	ь е • П	000 keV	ke¥		0 counts	15.330
	Label Elend	: 91EE1 ent: H	- 3 1 📉	<			

Tab. 3.4: Chemische Zusammensetzung des Kupferglanzes (Mikrosondenanalytik). Probe 1EE-1, Kupferschlacke. Kupferschmelzplatz S1.

Tab. 3.4. Chemical composition of chalcocite (microprobe analytics). Sample 1EE-1, copper slag. Copper Smelting Site S1.

Element	0	Cu	As	Sb	Ni	Fe	Mn	Со	S	Total
Wt %	0.00	76.54	0.14	0.00	0.00	1.45	0.00	0.00	19.61	97.74

Abb. 3.13: Semiquantitative Analyse von Delafossit mittels Mikrosonde (energiedispersives Analysensystem). Probe 920845, Kupferschlacke. Kupferschmelzplatz S1, FNR 68.

Fig. 3.13. Semiquantitative analysis of Delafossite using microprobe (energy dispersive analysis system). Sample 1EE-1, copper slag. Copper Smelting Site S1, FNR 68.

Abb. 3.14: Semiquantitative Analyse von "Cuprospinell" mittels Mikrosonde (energiedispersives Analysensystem). Probe 920845, Kupferschlacke. Kupferschmelzplatz S1, FNR 68.

Fig. 3.14. Semiquantitative analysis of 'cuprospinel' using microprobe (energy dispersive analysis system). Sample 920845, copper slag. Copper Smelting Site S1, FNR 68.

Abb. 3.15: Elementverteilungsbilder von S, Cu und O in metallischem Kupfer (1), Kupferglanz (2), Cuprit (3), Magnetitkristalle (4) und Olivinmischkristalle (5). Oben links Oberflächenabbildung mittels sekundärer Elektronen (siehe auch Abb. 3.8). Vergrößerung etwa 800x. Probe 1EE-1, Kupferschlacke. Kupferschmelzplatz S1. Fig. 3.15. Elemental distribution patterns of S, Cu and O in metallic copper (1), chalcocite (2), cuprite (3), magnetite crystals (4) and olivine crystals (5). Top left, surface mapping using secondary electrons (see also Fig. 3.8). Magnification about 800x. Sample 1EE-1, copper slag, Copper Smelting Site 1.

Abb. 3.16: Elementverteilungsbilder von Si, S, Ba, Fe, Cu, Mn und Ca in Kupferschlacke. Unten rechts Oberflächenabbildung mittels sekundärer Elektronen. Vergrößerung etwa 800x. Probe 1EE-2, Kupferschlacke, Kupferschmelzplatz S1.

Fig. 3.16. Elemental distribution patterns of Si, S, Ba, Fe, Cu, Mn and Ca in copper slag. Lower right surface mapping using secondary electrons. Magnification about 800x. Sample 1EE-1, copper slag, Copper Smelting Site 1.

3.2.2.2 Schwermetallgehalt von Erz- und Bodenproben

Die untersuchte Kupfer-Fahlerzvererzung aus dem Bergbau am Steirischen Erzberg besteht aus Kupferkies, Fahlerz, Kupferglanz, Malachit, Azurit, Covellin und Gangart (Abb. 3.17). In den Abbildungen 3.18 und 3.19 sowie in den Tabelle 3.5 bis 3.7 wird die chemische Zusammensetzung der Kupferminerale dargestellt. Der z. T. sehr hohe Kupfergehalt der Bodenproben (bis 2,4 %) wurde durch Schlackenkomponenten, welche auch sehr feinkörnig zerfallen sind, verursacht. Barium dürfte aus dem das Ausgangserz begleitenden Mineral Baryt stammen. Baryt wurde in einer Erzprobe (Hämatitderberz, Probe 920848) festgestellt, wo er häufig als Gangart mit Hämatit vergesellschaftet ist. Baryt wurde auch als Einschlüsse in Schlacken festgestellt (Abb. 3.17 bis Abb. 3.19, Tab. 3.5 bis 3.7).

Abb. 3.17: Kupferkies (gelb), Fahlerz (bläulichgrau), Kupferglanz (grünlichblauer Saum um Kupferkies), Malachit (dunkelgrau) und idiomorpher Quarzkristall (schwarz). Polierter Dünnschliff, Marke = 0.1 mm, Ölimmersion, Nicols parallel. Probe 920861, Steirischer Erzberg.

Fig. 3.17. Chalcopyrite (yellow), fahlore (blueish grey), chalcocite (greenish blue fringe around chalcopyrite), malachite (dark grey) and idiomorphic quartz crystal (black). Polished thin section, scale = 0.1 mm, oil immersion, parallel Nicols. Sample 920861, Styrian Iron Mountain.

42

Abb. 3.18: Semiquantitative Analyse von Kupferkies mittels Mikrosonde (energiedispersives Analysensystem). Probe 920861, Steirischer Erzberg. Fig. 3.18. Semiquantitative analysis of chalcopyrite via microprobe analytics (energy dispersive analyses system). Sample 920861. Styrian Iron Mountain.

Tab. 3.5: Chemische Zusammensetzung des Kupferkieses (Mikrosondenanalytik). Probe 920861, Steirischer Erzberg.

Tab. 3.5. Chemical composition of chalcopyrite (micro probe analytics). Sample 920861. Styrian Iron Mountain.

Element	S	Fe	Со	Ni	Cu	Zn	Ge	As	Ag	Sb	Mg	Total
Wt %	35.55	29.17	0.00	0.00	35.46	0.72	0.00	0.00	0.00	0.00	0.00	100.90

Abb. 3.19: Semiquantitative Analyse von Fahlerz und Kupferglanz mittels Mikrosonde (energiedispersives Analysensystem). Probe 920861, Steirischer Erzberg. Fig. 3.19. Semiquantitative analysis of fahlore and chalcocite via microprobe (energy dispersive analysis system). Sample 920861. Styrian Iron Mountain.

Tab. 3.6: Chemische Zusammensetzung des Fahlerzes (Mikrosondenanalytik). Probe 920861, Steirischer Erzberg. Tab. 3.6. Chemical composition of fahlore (micro probe analytics). Sample 920861. Styrian Iron Mountain.

Element	S-K	Fe-K	Со-К	Ni-K	Cu-K	Zn-K	Ge-K	As-L	Ag-L	Sb	Mg-K	Total
Wt %	24.10	1.63	0.00	0.00	35.10	5.09	0.00	0.00	0.00	30.03	0.00	100.00

Tab. 3.7: Chemische Zusammensetzung des Kupferglanzes (Mikrosondenanalytik). Probe 920861, Steirischer Erzberg.

Tab. 3.7. Chemical composition of chalcocite (microprobe analytics). Sample 920861. Styrian Iron Mountain.

Element	0	S	Fe	Со	Ni	Cu	Zn	Ge	As	Ag	Sb	Mg	Total
Wt %	0.00	20.40	3.35	0.00	0.16	75.27	0.30	0.00	0.00	0.00	0.24	0.00	99.73

3.2.3 Ergebnisse der mineralogisch-geochemischen Untersuchungen und Probennahme von Bodenprofilen vor Grabungsbeginn 1992

In den Böden direkt am Kupferschmelzplatz S1 war eine beginnende Braunerdebildung mit Kupfergehalten von durchwegs mehreren tausend ppm zu beobachten. Wurden Schlackenpartikel angetroffen, stieg der Kupfergehalt in einzelnen Horizonten bis über 20.000 ppm. Diese Kupfergehalte besitzen Großteils eine starke Korrelation mit Arsen, teilweise auch mit Nickel. In Schlacken ist darüber hinaus eine hohe Korrelation mit Antimon und Quecksilber nachzuweisen. Der Kupferschmelzplatz hebt sich nach seinen Schwermetallgehalten eindeutig und sehr stark von seinem geochemischen Umfeld ab. Im Vergleichsprofil außerhalb des Schmelzplatzes liegen alle Schwermetallpegel im Bereich der Gesteinshintergrundwerte.

Da in den Bodenhorizonten am Schmelzplatz unterschiedliche Elementkorrelationen gefunden wurden, kann als vorläufiges Ergebnis aus den geochemischen Daten abgeleitet werden, dass sowohl Kupferkies als auch Fahlerz zur Verhüttung eingesetzt wurden.

Anton DRESCHER

3.3 Vegetationskundliche Untersuchungen auf dem Kupferschmelzplatz S1 in der Eisenerzer Ramsau (Steiermark)¹⁰

3.3.1 Natürliche Vegetation der Umgebung des Kupferschmelzplatzes

Die Vegetation der Umgebung des Kupferschmelzplatzes S1 ist durch die Lage an der Grenze zwischen Nördlichen Kalkalpen mit triadischen Kalken und Dolomiten als Ausgangsgesteinen für die Bodenbildung und den südlich angrenzenden Eisenerzer Alpen mit meist geschieferten Gesteinen¹¹ gekennzeichnet. Diese Grenze, die im Gebiet vom Radmerhals und zum Kämpensattel zwischen Kaiserschild und Donnersalm und dann weiter durch die Große Fölz nach Münichtal¹² verläuft, bildet auch die Grenze zwischen den forstlichen Wuchsgebieten "Nördliche Zwischenalpen–Ostteil" und "Östliche Zwischenalpen–Nordteil".¹³

Der flächenmäßig überwiegende Teil des Gebietes wird von der montanen Höhenstufe (900– 1400/1500 m) eingenommen. Über Kalkgesteinen in der nordwestlichen Umrahmung des Hochtals dominiert die Rotbuche die potentiell-natürlichen Waldgesellschaften. Diese ursprünglichen Laub-Nadelmischwälder wurden durch jahrhunderte-

- ¹³ Kilian u. a. 1994.
- ¹⁴ Drescher-Schneider 2003.

- ¹⁶ Zukrigl 1973; Exner 2007.
- ¹⁷ Exner 2007.

langen Raubbau - vor allem für die Holzkohleproduktion im Mittelalter¹⁴ – in reine Fichtenbestände umgewandelt, die der Assoziation Adenostylo glabrae-Piceetum zugeordnet werden. Palynologische Untersuchungen im Moor am Neuburgsattel etwa 10 km Luftlinie westlich des Kupferschmelzplatzes und von der benachbarten Schröckalm durch Marshall zeigen eine Fichtendominanz schon ab der Römischen Kaiserzeit.¹⁵ Die früher weiter verbreitete Waldweide wird heute nicht mehr ausgeübt. Auf sehr frischen Unterhängen und an Grabeneinhängen über paläozoischen Gesteinen der Nördlichen Grauwackenzone mit bindigen, zum Teil vergleyten Böden wird es durch den Labkraut-Fichten-(Tannen-)wald (Galio rotundifolii-Piceetum) ersetzt.16 Über basenarmen Gesteinen der Grauwackenzone und mäßig nährstoffarmen Böden südlich des Ramsaubaches stellen Fichten-Tannenwälder, in die Rotbuche, Lärche und an feuchten Unterhängen auch Berg-Ahorn sporadisch auftritt, das vegetationsprägende Element dar (Luzulo luzuloidis-Piceetum).17 Diese Fichten-(Tannen-)wälder wer-

¹⁰ Eine ausführliche Diskussion siehe DRESCHER 2004.

¹¹ Stüwe 2018.

¹² WAGNER 1973.

¹⁵ Marshall 1994.

Abb. 3.20: Der bronzezeitliche Kupferschmelzplatz S1 in der Eisenerzer Ramsau. Bestand des Fichtenjungwuchses vor der Rodung vor Grabungsbeginn. Die grünen Punkte stellen die Stammbasen dar, auf die Ausführung der Kronenprojektion wurde der Übersichtlichkeit halber verzichtet. Aufnahme 1992. Grafik: S. Klemm, U. Schuh

Fig. 3.20. Bronze Age Copper Smelting Site S1, Eisenerzer Ramsau. Tree population of young spruce before forest clearance in advance of the excavation. The green symbols demonstrate the bases of the trunks; for reasons of clarity, a projection of the treetops was abstained from. Survey 1992. Map: S. Klemm, U. Schuh

den in der hochmontanen Stufe vom Alpenlattich-Fichtenwald (*Homogyno alpinae-Piceetum*) abgelöst.¹⁸

Der Talboden im Bereich der Gemeindealm in der Eisenerzer Ramsau aus guartärem Moränenmaterial und zum Teil fluviatilen Sedimenten wird durch die Schwemmkegel des Kaltenbaches und des Lasitzenbaches gegliedert und ist vollständig entwaldet. Die Einhänge zum Ramsaubach werden vor allem in den Mündungsbereichen von Lasitzenund Kaltenbach - von Hochstauden dominiert, die Bestände können der Ross-Minzen-Staudenflur (Aegopodio-Menthetum longifoliae)¹⁹ angeschlossen werden (vgl. Probefläche HS in Tab. 3.8, Abb. 3.21). Die flugfähigen Samen der Fichte verschaffen ihr in den Anfangsstadien der Wiederbewaldung einen Vorteil. Das Ergebnis sind sekundäre Fichtenreinbestände anstelle von Laub-Nadelholzmischbeständen. Der Vorbestand auf der Parzelle in der die Grabungsfläche liegt, kann nur mit Hilfe alter Forstoperate eruiert werden, die genaue Entstehung der Fichten-Verjüngung auf der Grabungsfläche muss also offen bleiben (Abb. 3.20).²⁰ Die Struktur dieser Waldbestände (Altersaufbau, Schichtung) ist wie in einem großen Teil der Ennstaler und Eisenerzer Alpen von der jahrhundertelangen Köhlerei und der damit verbundenen Kahlschlagswirtschaft geprägt. Auch Waldweide und die Nutzung als kaiserliches Jagdrevier durch Maximilian I. waren lokal von Bedeutung. Die Entwicklung im 19. und 20. Jahrhundert führte zu hohen Rotwilddichten und großflächigen Schälschäden.²¹

3.3.2 Untersuchungen vor Grabungsbeginn

Um die Frage nach dem Vorkommen von Zeigerpflanzen für Kupfer auf prähistorischen Kupferschmelzplätzen bzw. den Schlackenhalden beantworten zu können, wurden im Sommer 1992 fünf Probeflächen auf dem bronzezeitlichen Kupferschmelzplatz S1 floristisch dokumentiert und die Abundanz/Dominanz jeder Art mit Hilfe der erweiterten 9-stufigen Skala geschätzt.²² In Tabelle 3.8 sind diese Daten zusammengestellt.

Keine der in der Literatur angeführten Zeigerpflanzen für Kupfer - durchwegs Kryptogamen konnte beobachtet werden, wohl aber einige Gefäßpflanzen aus Familien mit Vertretern, die auch Schwermetallstandorte besiedeln. Sie sind in Tabelle 3.8 mit * markiert. Von den auf dem Kupferschmelzplatz S1 vorkommenden Arten ist nur eine Art von der Halde eines Bergbaues auf silberhaltige Blei/Zink-Erze in Deutschnofen-St. Helena, Südtirol/Italien mit Messungen dokumentiert. Die Kupfergehalte der oberirdischen Organe von Agrostis stolonifera betragen 19 mg/kg, die der Wurzeln 134 mg/kg.23 Die wie alle Gräser wegen des Verhältnisses der Kupfergehalt von oberirdischer zu unterirdischer Phytomasse < 1 als "excluder"²⁴ eingestufte Art ist auf Grund der zu geringen Abundanz in unserem Fall nicht für Analysen herangezogen worden.

Aus diesem Grund wurden am 17. August 1992 von zwei Fichten (*Picea abies*), Nr. 206 von einem Standort mit starker Schwermetall-Anomalie und Nr. 81 von einem Standort (00) außerhalb der Untersuchungsfläche, Nadelproben gewonnen und auf das Schwermetall Kupfer untersucht (Abb. 3.21).²⁵

Obwohl die Aufnahmerate in sauren Böden (im vorliegenden Fall zwischen pH 3,4 und maximal 6,6²⁶) am größten ist, ergaben die Messungen an Fichte Nr. 206 (Standort mit starken Anomalien) bzw. Nr. 81 (mehr oder minder ungestörter Standort) Werte zwischen 4 und 14 mg/kg Trockengewicht und zwar ohne signifikante Unterschiede zwischen belastetem und unbelastetem Standort. Im

¹⁸ Exner 2007.

¹⁹ MUCINA 1993.

²⁰ KREINER 2000 u. a. mit Informationen zur jüngsten Geschichte und den Strukturveränderungen in der Eisenerzer Ramsau und angeschlossener Karte der Biotoptypen im Maßstab 1:10.000; Drescher-Schneider 2003 mit detaillierten Informationen über die Vegetations- und Landschaftsentwicklung seit dem Neolithikum.

²¹ Kreiner 2000.

²² Braun-Blanquet 1964; Reichelt/Wilmanns 1973.

²³ Punz u. a. 1994.

²⁴ Baker 1981.

²⁵ Die Cu-Gehalte der getrockneten und gemahlenen Nadeln wurden im Salpeter-Perchlorsäuregemisch (5:1) mit dem Atomabsorptionsspektrographen Marke Perkin-Elmer, Typ 2380 gemessen. Zur Methode der Probenahme siehe GLATTES u. a. 1985.

²⁶ Vgl. die Protokolle im Anhang 1 (Proben der organischen Auflagehorizonte [Ol, Oh] – Probennummern 920501, 920514; der Mineralbodenhorizonte [Ah, AP – Probennummern 920502, 925015 und Bv – Probennummern 920503 und 920516]).

*Tab. 3.8: Vegetationsaufnahmen des Schmelzplatzes S1 (vgl. Abb. 3.21). Die Nomenklatur der Gefäßpflanzen richtet sich nach FISCHER et al. 2008. Mit * markierte Taxa sind aus Familien, deren Arten öfter auf schwermetallhaltigen Standorten vorkommen.*

*Tab. 3.8. Survey of the vegetation at the Copper Smelting Site S1 (see fig. 3.21). The binary nomenclature follows FISCHER et al. 2008. Taxa marked with * derive from families whose species are often found on sites with heavy metal concentration.*

	00	A1	A2	A3	HS
Aufnahmemonat 1992	8	8	8	8	8
Seehöhe in m	1035	1035	1035	1035	1030
Exposition					SW
Neigung in Grad					3
Fläche in m ²	6	6	6	6	8
Gesamtdeckung	80	30	75	70	95
Vegetationshöhe K in dm	5	4	4	4	12
Vegetationsdeckung K in %	50	20	35	60	90
Vegetationsdeckung M in %	30	10	40	10	5
Artenzahl	38	38	40	57	33
Artname					
Picea abies	1	1	1	1	1
Sambucus racemosa	r				
Sorbus aucuparia subsp. aucuparia			+		
Acer pseudoplatanus		r		r	
Luzula luzuloides	1	1	1	1	
Potentilla erecta	1	1	2m	- 2a	
Homogyne alpina	2m	2m	2m	2m	
Vaccinium myrtillus	2a	1	2a	1	
Carex leporina	1		1	+	
Rubus idaeus	+	1		+	
Ranunculus spec.	+	r		1	
* Agrostis capillaris	2m	2m	2m	2m	
Thelvpteris limbosperma	1	1	1	r	
Deschampsia cespitosa	1	+	+	+	1
Gentiana asclepiadea	+	r	1	+	+
Hypericum maculatum	+		+	r	1
Lysimachia nemorum	1		2m	1	1
Alchemilla vulgaris agg.	r		r	r	r
Athyrium filix-femina	_	1	-	r	-
Veronica officinalis	1	_		1	
Senecio ovatus subsp.	+			+	2a
Epilobium montanum	r			r	r
Prenanthes purpurea	+	r			+
Hieracium murorum		r		r	
Carex pilulifera		+		+	
Galeopsis spec.	+				
Lycopodium clavatum	r				
Epilobium angustifolium		1			
* Campanula rotundifolia		r			
Gymnocarpium dryopteris		1			
Hieracium bifidum		1	+		

	00	A1	A2	A3	HS
Ajuga reptans		1		+	+
Solidago virgaurea		+		+	
Melica nutans		+			
Oxalis acetosella		r	r		
Dryopteris carthusiana		+	r	r	
Lycopodium annotinum			1	-	
Majanthemum bifolium	r		+		
Blechnum spicant	-		1		
* Avenella flexuosa			+	r	
Carex flacca			+	1	
Cynosurus cristatus			+		
* Festuca rubra			+		
* Poa supina					
Ranunculus acris			' -		
Fragaria vasca	1		1) m	
Trifolium ronone suben	1	r		2111 1	
repens		I		1	
Euphrasia officinalis subsp. rostkoviana				2m	
Luzula pilosa			+	+	
Carex digitata			r	r	
Plantago major				1	
Prunella vulgaris				1	
* Poa annua				+	
Luzula luzulina	+			+	
Cerastium holosteoides				+	
Stachys sylvatica				+	
Hieracium spec.				+	
Nardus stricta				+	
Phleum rhaeticum				+	
Caltha palustris				+	
Rumex acetosa				r	
Gnaphalium spec.				r	
Platanthera bifolia				r	
Galeopsis speciosa				r	
* Silene dioica				r	
Tussilago farfara				r	
Galium spec				r	
Chaerophyllum hirsutum					22
Mentha longifolia					2a 2a
Muosotis nemorosa					2a 1
Stellaria nemorum					1
Cropis poludoso					1
Papupculus reports					1
Petasites abus					1

	00	A1	A2	A3	HS
Rumex alpestris					1
* Agrostis stolonifera agg.					1
Primula elatior					1
Rubus spec.					+
Carex sylvatica					+
Veronica chamaedrys					+
* Cardamine hirsuta					+
Chrysosplenium					+
alternifolium					
Lamium maculatum					+
Alchemilla crinita					+
Equisetum arvense					r
Viola biflora					r
Veronica persica					r
Dicranum scoparium	+	1	1	1	+
Pleurozium schreberi	1	+	2m	2m	+
Polytrichum formosum	1	+	2m		

vorliegenden Fall sind die kupferschlackenhaltigen Mineralbodenhorizonte Bv mit Cu-Gehalten von 2470 bzw. 6847 mg/kg²⁷ von stark humosen Auflagen bzw. A-Horizonten mit Cu-Gehalten von über 200 bis maximal 890 mg/kg²⁸ abgedeckt, in denen nur ein geringer Prozentsatz der Cu-lonen in einer pflanzenverfügbaren Form vorliegt.

Die Kupfergehalte in den obersten Bodenhorizonten eines ausschließlich mit Kryptogamen bewachsenen Haldenstandortes am NE-exponierten Unterhang zum Halsbach ca 1,3 km Luftlinie SW der Gemeindealm bewegen sich zwischen 16100 und 29000 mg/kg. Der Standort weist keine nennenswerte Humusauflage auf.²⁹ Auf Grund des Vorkommens der Moose *Nardia scalaris* und *Oligotrichum hercynicum* stellen Emmerer/Hafellner die Aufnahmen in die Assoziation *Pogonatetum urnigeri*, einer Pioniermoosgesellschaft, die eine Reihe weiterer Moose mit einem Verbreitungsschwerpunkt auf schwermetallreichen Standorten beherbergt.³⁰

	00	A1	A2	A3	HS
Polytrichum commune	2a		3	1	
Rhytidiadelphus squarrosus		+	1	1	+
Rhytidiadelphus loreus		1	1	+	
Orthodicranum montanum		1	+	+	
Plagiomnium affine		1	r		
Tetraphis pellucida		+			
Plagiothecium laetum		+			
Rhacomitrium canescens		+			
Sphagnum nemoreum			+		
Plagiochila asplenioides			+		
Atrichum undulatum	1			+	
Cladonia spec.		+	+	+	
Barbilophozia			+		
lycopodioides					
Brachythecium salebrosum		+		+	
Eurhynchium hians					r

Die Cu-Gehalte der obersten Bodenhorizonte anderer Standorte derselben Halde, auf denen bereits Gefäßpflanzen vorkommen, sind mit 3980 bis 4500 mg/kg deutlich niedriger³¹ und entsprechen denen der Mineralbodenhorizonte des Kupferschmelzplatzes S1³².

Die Artenkombination des Kupferschmelzplatzes S1 (Tab. 3.8) zeigt weder Übereinstimmungen mit der Moosgesellschaft *Pogonatetum urnigeri* vom stark belasteten Haldenstandort am Halsbach (FP 60104.007)³³ noch mit den beschriebenen Vegetationseinheiten von anderen ostalpinen Schwermetall- bzw. Haldenstandorten³⁴. Sie entsprechen relativ gut den Aufnahmen aus dem Umfeld des Haldenkomplexes vom Halsbach bzw. Fichtenbeständen von neuzeitlichen Schlackenhalden aus dem Walchengraben (Niedere Tauern),³⁵ die verschiedenen Fichtenwald-Ausbildungen zugeordnet werden können.³⁶ Sowohl das Vorkommen von Zwergsträuchern wie Heidelbeere (*Vaccinium myrtillus*) oder wenig anspruchsvollen Farnen wie Eichenfarn

²⁷ Vgl. die Protokolle im Anhang 1 (Probennummern 920503 und 920516).

²⁸ Vgl. die Protokolle im Anhang 1 (Probennummern 920501, 920502 sowie 920514 und 925015).

²⁹ EMMERER u. a. 2003: Die Proben wurden von der Kupferschlackenhalde der Fundstelle FP 60104.007 in der Eisenerzer Ramsau genommen. Vgl. dazu KLEMM/RESCH 2003.

³⁰ Emmerer/Hafellner 2005.

³¹ Emmerer/Hafellner 2005, Tabelle 9.

³² Vgl. Anm. 18.

³³ KLEMM u. a. 2003; EMMERER/HAFELLNER 2005, Tabelle 10.

³⁴ Punz/Mucina 1997.

³⁵ Emmerer/Hafellner 2005.

³⁶ Emmerer/Hafellner 2005, Tabelle 8.

Abb. 3.21: Der bronzezeitliche Kupferschmelzplatz S1 in der Eisenerzer Ramsau. Versuchsanordnung und Vegetationsaufnahme vor Grabungsbeginn im August 1992, A. Drescher. Nadelanalysen erfolgten an der Forstlichen Bundesversuchsanstalt, Wien (FBVA^{36a}). Nach A. Drescher 2004, Abb. 2; Grafik: S. Klemm, U. Schuh

Fig. 3.21. Bronze Age Copper Smelting Site S1, Eisenerzer Ramsau. Experimental set-up and documentation of the vegetation prior to the excavation in August 1992, A. Drescher. The analyses of the pins of spruce by Forstliche Bundesversuchsanstalt, Vienna (FBVA). See A. DRESCHER 2004, fig. 2; map: S. Klemm, U. Schuh

(*Gymnocarpium dryopteris*) in den Fichtenbeständen in der Umgebung der Halden am Halsbach als auch in der Eisenerzer Ramsau zeigt, dass die Bindung der Cu-Ionen an Huminstoffe der Humusauflage recht stabil ist und nur geringe Mengen Cu in der Bodenlösung zur Verfügung stehen.³⁷ Es fehlen daher auch die für kupferbelastete Standorte typischen Moose *Nardia scalaris, Oligotrichum hercynicum* und *Pohlia drummondii.*³⁸ Der abgedeckte, lehmige Mineralbodenhorizont auf dem Kupferschmelzplatz S1 mit Cu-Gehalten zwischen 2470 mg/kg und 6847 mg/kg entsprechen denen auf gefäßpflanzendominierten Bereichen des Probepunktes 2 der Halde FP 60104.007³⁹.

Unter diesen Verhältnissen können auf den untersuchten Teilflächen des Schmelzplatzes S1 Frischezeiger wie Kriechender Günsel (*Ajuga reptans*),

Susanne KLEMM

3.4 Zusammenfassung

Vor Grabungsbeginn im August 1992 erfolgte eine geodätische Vermessung des Kupferschmelzplatzes S1 sowie eine geophysikalische Vermessung. Die zukünftige Grabungsfläche wurde in Quadranten zu 5 x 5 m untergliedert, deren Eckpunkte wurden mit Holzpflöcken, in die kleine Nägel eingeschlagen wurden, markiert. Auf der annährend ebenen Fläche sowie auf dem mittleren und östlichen Teil der Böschung zum Bach wurden eindeutige geomagnetische Anomalien, wie sie auch von anderen Kupferschmelzplätzen bekannt waren, erfasst (Abb. 3.1 bis 3.5).

Auf Basis der Ergebnisse der geophysikalischen Prospektion wurden am 17. August 1992 botanische Proben sowie Bohrprofile bis zu einer Tiefe von max. 1 m entnommen, um Probenmaterial für Untersuchungen zur Schwermetallbelastung des Bodens wie des Bewuchses vornehmen zu können. Diese wurden ergänzt durch erste mineralogische Untersuchungen von Kupferschlacken des Schmelzplatzes und Kupfererz, welches vom Steirischen Erzberg stammte. Alpen-Brandlattich (Homogyne alpina) oder Berg-Ahorn (Acer pseudoplatanus) in der Gehölzverjüngung wachsen. Sogar gegenüber der Stickstoffversorgung etwas anspruchsvollere Arten wie Wald-Gilbweiderich (Lysimachia nemorum) und Fuchs-Hain-Greiskraut (Senecio ovatus) sind am Einhang zum Ramsaubach und in einzelnen Teilflächen vorhanden (vgl. Tab. 3.8). Die Vegetation auf dem Kupferschmelzplatz S1 entspricht dem "Typus e" in Emmerer u. a., dessen Artenzusammensetzung nicht von durch Kupfer unbelasteten Standorten der Umgebung abweicht. Die Abdeckung des Mineralbodens durch eine unter einem Waldbestand gebildete Humusauflage macht daher den Standort für den Kupfernachweis mittels Zeigerpflanzen ungeeignet.

Die geochemischen Untersuchungen der Proben vom Kupferschmelzplatz S1 wiesen einen bis über 20.000 ppm hohen Kupfergehalt in einzelnen Horizonten nach (Proben B1–B3), während die Schwermetallgehalte der Kontrollprobe knapp außerhalb der Fläche (Probe B4) im Bereich der Gesteinshintergrundwerte lagen. Die Kupfergehalte wiesen eine hohe Korrelation mit Arsen und Nickel auf, Schlackenstücke zudem eine hohe Korrelation mit Antimon und Quecksilber. Bei der Erzverhüttung wurden somit Kupferkies wie Fahlerz eingesetzt (Abb. 3.6 bis 3.19, Tab. 3.7).

Im Zuge der botanischen Beprobung des aktuellen Bewuchses wurden keine der in der einschlägigen Literatur angeführten Zeigerpflanzen gefunden. Der Grund dafür liegt in der jahrhundertelangen Nutzung der Fläche im Rahmen der Waldwirtschaft und als Weide sowie aufgrund der Bodenneubildung seit der Auflassung des Kupferschmelzplatzes in der Bronzezeit bzw. der Nachnutzung des Standortes im späten Mittelalter für die Holzkohleproduktion in einer Meilergrube (Abb. 3.20 und 3.21, Tab. 3.8).

^{36a} https://de.wikipedia.org/wiki/Forstliche_Bundesversuchsanstalt (bis 2005; Nachfolger: BFW, Bundesforschungs- und Ausbildungszentrum f
ür Wald, Naturgefahren und Landschaft).

³⁷ Drescher 2004 (dort auch Diskussion).

³⁸ Emmerer/Hafellner 2005, Tabelle 10.

³⁹ Emmerer u. a. 2003.

3.5 Scientific Investigations prior to the Archaeological Excavation at the Copper Smelting Site S1: Geophysical, Mineralogical-geochemical and Botanical Investigations (Summary)

Before the start of the excavation in August 1992, a geophysical survey of the Copper Smelting Site S1 was carried out. On the large, rather flat area as well as on the middle and eastern part of the steep slope towards the stream, geomagnetic anomalies were identified such as have been known from other prehistoric copper smelting sites in the Eastern Alps. In preparation for the excavation, a survey for an elevation model of the site took place and a net of squares, each measuring 5×5 m, their corners marked with wooden posts with nails on top, was established all over the site. (Figs. 3.1 to 3.5)

Based on the results of the geophysical survey, soil samples were taken for soil analyses. As the geochemical analyses of some soil samples showed, a number of these (samples B1–B3) had copper contents as high as 20.000 ppm in contrast to sample B4 from outside the site. The copper contents had a high correlation with arsenic and nickel; the slag pieces also had a high correlation with antimony and mercury. In addition, the first mineralogical analyses of the copper slags and copper ore from the Styrian Iron Mountain were carried out. The results showed that chalcopyrite as well as fahlore were used for copper production on the Copper Smelting Site S1 (Figs. 3.6 to 3.19, Tabs. 3.1 to 3.7, Supplement 1).

The current vegetation was also described and samples taken, though no specific concentration of copper was found in the spruce needles. No plants typical of sites with high copper concentrations were found. The reason for this lies in the formation of new soil since the site's abandonment in the Bronze Age as well as the reuse of the flattened area for charcoal production in the late Middle Ages and in the centuries-long use of the area as forest and/or meadow for cattle. (Figs. 3.20 and 3.21, Tab. 3.8)

3.6 Literatur / Publications

Baker 1981

BAKER A. J. M., Accumulators and excluders — strategies in the response of plants to heavy metals. In: Journal of Plant Nutrition 3 (1981), 643–654.

BRAUN-BLANQUET 1964

BRAUN-BLANQUET J., Pflanzensoziologie. Grundzüge der Vegetationskunde (Berlin-Wien-New York ³1964).

Drescher 2004

DRESCHER A., Vegetationskundliche Untersuchungen an prähistorischen Kupferschmelzplätzen in der Eisenerzer Ramsau, Alpenkupfer – Rame delle Alpi (= Der Anschnitt, Beiheft 17, = Veröffentlichungen aus dem Deutschen Bergbau-Museum Bochum 122, Bochum 2004), 347–354.

Drescher-Schneider 2003

DRESCHER-SCHNEIDER R., Die Vegetation- und Siedlungsgeschichte der Region Eisenerz auf Basis pollenanalytischer Untersuchungen im Leopoldsteiner See und in der Eisenerzer Ramsau. In: S. KLEMM, Montanarchäologie in den Eisenerzer Alpen, Steiermark. Archäologische und naturwissenschaftliche Untersuchungen zum prähistorischen Kupferbergbau in der Eisenerzer Ramsau (= Mitteilungen der Prähistorischen Kommission 50, Wien 2003), 174–197.

Emmerer/Hafellner 2005

Еммеrer B./HAFELLNER J., Zur aktuellen Vegetation auf Abraum- und Schlackenhalden historischer Kupferbergbaue in der Montanstufe der Niederen Tauern und der Eisenerzer Alpen (Steiermark, Österreich). In: Mitteilungen des naturwissenschaftlichen Vereines für Steiermark 134 (2005), 121–152.

Emmerer u. a. 2003

Еммеrer B./Steinlechner E./Trinkaus P./Gössler W., Ökologische Untersuchungen von prähistorischen Kupferschlackenhalden in der Eisenerzer Ramsau. In: S. Klemm, Montanarchäologie in den Eisenerzer Alpen, Steiermark. Archäologische und naturwissenschaftliche Untersuchungen zum prähistorischen Kupferbergbau in der Eisenerzer Ramsau (= Mitteilungen der Prähistorischen Kommission 50, Wien 2003), 165–173.

Exner 2007

Exner A., Vaccinio-Piceetea Br.-Bl. et al. 1939. In: W. WILLNER/G. GRABHERR, Die Wälder und Gebüsche Österreichs (Heidelberg 2007), 183–208.

FISCHER u. a. 2008

FISCHER M. A./OSWALD K./ADLER W., Exkursionsflora für Österreich, Liechtenstein und Südtirol (Linz ³2008).

Glattes u. a. 1985

GLATTES F./SMIDT S./DRESCHER A./MAJER C./MUTSCH F., Höhenprofil Zillertal Untersuchung einiger Parameter zur Ursachenfindung von Waldschäden. Einrichtung und Ergebnisse 1984. In: FBVA-Berichte 9 (1985), 1–81.

Kilian u. a. 1994

KILIAN W./MÜLLER F./STARLINGER F., Die forstlichen Wuchsgebiete Österreichs. Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. In: FBVA-Berichte 82 (1994), 1–60.

КLЕММ и. а. 2003

KLEMM S./RESCH J./WEINEK H., Fundstellenkatalog Eisenerzer Ramsau: KG Krumpental (VB Leoben). In: S. KLEMM, Montanarchäologie in den Eisenerzer Alpen, Steiermark. Archäologische und naturwissenschaftliche Untersuchungen zum prähistorischen Kupferbergbau in der Eisenerzer Ramsau. Mit Beiträgen von Johann RESCH[†], Horst WEINEK, Herwig PROSKE, Barbara EMMERER, Elisabeth STEINLECHNER, Peter TRINKAUS, Werner Gössler, Ruth DRESCHER-SCHNEIDER (= Mitteilungen der Prähistorischen Kommission 50, Wien 2003), 95–148.

Kreiner 2000

KREINER D., Naturräumliche Bewertung der Eisenerzer Ramsau (Eisenerzer Alpen/Steiermark) (DiplA. Graz 2000).

MUCINA 1993

MUCINA L., 1993. Galio-Urticetea. In: L. MUCINA/G. GRABHERR/T. ELLMAUER (Hgg.), Die Pflanzengesellschaften Österreichs, Teil I: Anthropogene Vegetation (Jena–Stuttgart–New York 1993), 201–251.

Punz u. a. 1994

PUNZ W./KOVACS G./KÖRBER-ULRICH S./THONKE A./WIELÄNDER B./WIESHOFER I., Schwermetallstandorte im mittleren Alpenraum — neue Befunde. In: Verhandlungen der Zoologisch-Botanischen Gesellschaft Österreich 131 (1994), 1–26.

Punz/Mucina 1997

PUNZ W./MUCINA L., Vegetation on anthropogenic metalliferous soils in the Eastern Alps. In: Folia Geobotanica et Phytotaxonomica 32 (1997), 283–295.

Reichelt/Wilmanns 1973

REICHELT G./WILMANNS O., Vegetationsgeographie (Braunschweig 1973).

Willner 2007

WILLNER W., Fagion sylvaticae Luquet 1926. In: W. WILLNER/G. GRABHERR, Die Wälder und Gebüsche Österreichs (Heidelberg 2007), 144–166.

Zukrigl 1973

ZUKRIGL K., Montane und subalpine Waldgesellschaften am Alpenostrand (= Mitteilungen der Forstlichen Bundesversuchsanstalt 101, Wien 1973).

3.7 Anhang: Beilage zu den mineralogisch-geochemischen Untersuchungen / Supplement to the Mineralogical-geochemical Investigations ↓

		EAN/INFECTO 1000, Cumulda Anthanaal (Tant. alaas.)
	CLASSIFICATION	USDA, 1975:
	Diag	nostic horizons: ochric
	Local	classification:
	LOCATION	: Ramsau
	AUTHOR(S) - DATE	Meridian : Latitude: Longitude: Altitude: (m.a.s.l.) (mm.yy) : Eisenhut/Umfer - 8,92
	GENERAL LANDFORM PHYSIOGRAPHIC UN SLOPE Gradi POSITION OF SITE	: man made Topography: IT : ent/aspect/form: 9 % S :
	LAND USE VEGETATION Landuse/veg	: Structure: etation remarks:
	PROFILE DESCRIPT	ION
920501	0 1- Ocm	10,0YR 2,0/1,0 moist; 10,0YR 2,0/2,0 dry;; needles, decomposed; ; common very fine discontinuous pore highly porous; common coarse roots throughout; abrupt smooth boundary to
920502	Ah O- 8cm	5,0YR 2,0/1,0 moist; silt loam; fine to very fine weak to moderate subangular blocky and fine to very fine weak to moderate crumb; many very fine discontinuous pores; moderately porous; common fine roots throughout; few pedotubules; abrupt smooth boundary to
920503	Bw 8−17cm	7,5YR 3,0/4,0 moist; silt loam; fine to very fine moderate subangular blocky; many very fine continuous interstitial pores; moderately porous; few very fine roots throughout and few fine roots throughout; ; abrupt smooth boundary to
920504	I* 17-35cm	silt loam; fine to very fine weak to moderate subangular blocky; common coarse prominent diffuse mottles; common micro discontinuous interstitial pores; moderately porous; nil roots; abrupt smooth boundary to
920505	II* 35- 52cm	sandy loam; fine to very fine weak to moderate subangular blocky; common fine prominent diffuse mottles; common micro discontinuous interstitial pores; moderately porous; nil roots; abrupt smooth boundary to
920506	III* 52-70cm	sandy loam; structureless; common fine distinct diffuse mottles; nil pores; clear smooth boundary to
920507	Cw 70-94cm	<pre>sandy loam,gravelly; structureless ; common medium prominent diffuse mottles; nil pores; nil roots; ;</pre>
	REMARKS:	
	Geologie: Werfer	ier Schiefer
	(*) I,II,III sir Angaben zum Kall interpretierbar	nd keine gültigen Horizontsymbole, :gehalt fehlen, die Daten zur Bodenstruktur der Horizonte 920506 und 920507 sind nicht
	Profilformel und	l Bodentyp:

	CLASSIFICA	TION	AO/UNESCO 1988	Cumulic	Anthrosol (Te	nt, class			
			USDA,1975:						
	(0	Diagr	ostic horizons:	ochric					
	(0	Local	classification:						
				Ramsau					
	AUTHOR(S)	- DATE	Meridian : (mm.yy) :	Eisenhu	Latitude: ut/Umfer	ا 8,92 -	ongitude:	Altitude:	(m.a.s.l.)
	GENERAL LA	NDFORM	т .) .:	man mad	le		Topography:		
	SLOPE POSITION O	Gradie F SITE	nt/aspect/form:	%	S				
	LAND USE VEGETATION		Structure:						*****
	Landu	se/vege	tation remarks:						
	PROFILE DE	SCRIPTI	ON						
920514	0 1-	Ocm	10,0YR 2,0/1,0 weak crumb; ma throughout; ;) moist; any very ; abrupt	10,0YR 2,0/1,0 fine continuou smooth boundar	dry;; herl s pores; h y to	paceous fragments ghly porous; com	,highly decomposed; w mon very fine roots	ery fine
920515	Ah O-	6cm	5,0YR 2,0/1,5 highly porous;	5 moist; ; common	5,0YR 2,0/2,0 very fine root	dry; silt s throughou	very fine moder it; ; abrupt smo	ate crumb; many very oth boundary to	fine pores;
920516	Bw 6-	20cm	7,5YR 3,0/4,0 common very fi ; abrupt smoot	D moist; ine conti th bounda	loamy sand,sli inuous pores; m ary to	ghtly grav oderately p	elly; medium stro xorous; few very	ng subangular blocky; fine roots throughout	;
920517	I* 20-	26cm	5,0YR 2,0/2,0 micro pores; h) moist; nighly po	silt,slightly prous; few very	gravelly; fine root:	fine to very fine throughout; ;	moderate crumb; many abrupt smooth boundar	y to
920518	II* 26-	46cm	2,5YR 4,0/6,0 nil roots; ;) moist;	sandy loam,gra	velly; fin	e to medium stron	g angular blocky; nil	pores;
	REMARKS:								
	Geologie:	Werfene	er Schiefer						
		1.5.1 L.S.S.	and the back of the second second						
	71.5 m m	and ke	ne gultigen Hor	rizontsyn	nbole,				
	(*) I,II s Angaben zu	m Kalko	ehalt fehlen.						
	(*) I,II s Angaben zu	ım Kalkç	gehalt fehlen.						
	(*) I,II s Angaben zu Profilform	ım Kalkç nel und	gehalt fehlen. Bodentyp:						
	(*) I,II s Angaben zu Profilform Die Einord	im Kalkç iel und inung er	gehalt fehlen. Bodentyp: 'folgte unter de	er Annahm	me,daß es sich	bei 920517	und 920518 um an	thropogene Horizonte	handelt.
	<pre>(*) I,II s Angaben zu Profilform Die Einord Österreich BRD</pre>	im Kalks iel und inung er :OfOh - :OfOh -	gehalt fehlen. Bodentyp: 'folgte unter de ' Ah - Bv - I* - ' Ah - Bv - I* -	er Annahn - II* : - II* :	me,daß es sich Haldenboden Auftragsboden	bei 920517	und 920518 um an	thropogene Horizonte	handelt.
	<pre>(*) I,II s Angaben zu Profilform Die Einord Österreich BRD</pre>	m Kalkç nel und nung er cofoh - cofoh -	gehalt fehlen. Bodentyp: *folgte unter de • Ah – Bv – I* - • Ah – Bv – I* -	er Annahn - II* : - II* :	me,daß es sich Haldenboden Auftragsboden	bei 920517	und 920518 um an	thropogene Horizonte	handelt.
	<pre>(*) I,II s Angaben zu Profilform Die Einord Österreich BRD</pre>	m Kalkç Nel und Nung er Nofoh -	gehalt fehlen. Bodentyp: 'folgte unter de · Ah – Bv – I* - · Ah – Bv – I* -	er Annahm - II* : - II* :	me,daß es sich Haldenboden Auftragsboden	bei 920517	und 920518 um an	thropogene Horizonte	handelt.
	<pre>(*) I,II s Angaben zu Profilform Die Einord Österreich BRD</pre>	m Kalkş Hel und Inung er COTOh -	gehalt fehlen. Bodentyp: "folgte unter de • Ah — Bv — I* - • Ah — Bv — I* -	er Annahm - II* : - II* :	me,daß es sich Haldenboden Auftragsboden	bei 920517	und 920518 um an	thropogene Horizonte	handelt.
	<pre>(*) I,II s Angaben zu Profilform Die Einord Österreich BRD</pre>	m Kalkş nel und nung er :ofoh - :ofoh -	gehalt fehlen. Bodentyp: 'folgte unter de ' Ah – Bv – I* - ' Ah – Bv – I* -	er Annahm - II* : - II* :	me,daß es sich Haldenboden Auftragsboden	bei 920517	und 920518 um an	thropogene Horizonte	handelt.
	(*) I,II s Angaben zu Profilform Die Einord Österreich BRD	m Kalkg Nung er Nofoh - Ofoh -	gehalt fehlen. Bodentyp: "folgte unter de - Ah — Bv — I* - - Ah — Bv — I* -	er Annahm - II* : - II* :	me,daß es sich Haldenboden Auftragsboden	bei 920517	und 920518 um an	thropogene Horizonte	handelt.

	CLASSI	ICATION	FAO/UNESCO,1988:	Gleyic Cambisol (Ten	t. class.)			
		Die	USDA,1975:	achain				
		(other)	Diagn. criteria:	gleyic and stagnic p	rop.			
		Loca	al classification:					
	LOCATIO	N	:	Ramsau				
	AUTHOR	S) - DAT	Meridian : E (mm.yy) :	Latitude: Eisenhut/Umfer	Longi - 8,92	tude:	Altitude:	(m.a.s.l.)
	GENERAL PHYSIOG SLOPE POSITIC	. LANDFOR RAPHIC U Grad N OF SIT	M : NIT : lient/aspect/form: E :	x		Topography:		
	LAND US VEGETAT	E ION induse/ve	: Structure: getation remarks:					
	PROFILE	DESCRIP	TION					
920525	0	2- Ocm	5,0YR 2,0/1,0 continuous pore	moist;; needles,mode es; highly porous; ma	rately decompose ny roots through	d; very fine weak wout; abrupt smoo	k crumb; common m oth boundary to	icro
920526	Ah	0- 4cm	5,0YR 2,0/1,5 common very fir few worm channe	moist; silt; fine mo ne continuous pores; els and coprogenic el	derate crumb fi moderately porou ements; abrupt s	ne to medium mode s; many coarse ro mooth boundary to	erate subangular oots throughout; o	blocky;
920527	Ag	4- 8cm	n 2,5Y 4,0/1,0 m common fine roo	moist; silt; fine to ots throughout; abru	medium strong pl pt smooth bounda	aty; few continue wry to	ous pores; slight	ly porous;
920528	Bg	8- 10cm	loamy sand; fir (7,5YR 5,0/6,0 throughout; ab	ne to medium moderate D) mottles; few conti prupt smooth boundary	platy; many med nuous pores; sli to	lium prominent sha ghtly porous; fea	arp (0,0N 6,0/0, w fine roots	0) and
920529	I*	10- 29cm	n sandy loam,slig (5,0YR 3,0/4,0	ghtly gravelly; fine)) mottles; few micro	to medium modera continuous pore	ite platy; common s; few fine root:	medium (0,0N 4, s; abrupt sm∞th	0/0,0) and boundary to
920530	В	29- 44cm	7,5YR 5,0/6,0 continuous pore	moist; sandy loam,gr es; nil roots; clear	avelly; medium m smooth boundary	oderate angular 1 ⁄ to	blocky; common ve	ry fine
920531	Cw	44- 68cm	sandy loam,grav (0,0N 5,0/0,0)	velly; weak subangul) mottles; few micro	ar blocky; many continuous pores	medium (7,5YR 4 ; nil roots;	,0/4,0) and	
	REMARKS	5:						
	Geologi	e: Werfe	mer Schiefer					
	(*) I i Angaber	st kein 1 zum Kal	gültiges Horizonts kgehalt, Lage und	symbol, Hangneigung** fehlen	ı .			
	Profil1	ormel ur	d Bodentyp:					
	Die Eir	ordnung	erfolgte aufgrund	der Horizontbezeichn	ungen.			
	Österre	ich: 0 -	- Ah - AP - P - I*	- B - Cv : (Pseudoalle	v bzw Hanonseud	iogley(**))		

	CLASSIFICATION	FAO/UNESCO,1988: Gleyic Cambisol (Tent. class.) USDA,1975:
	Diag (other) Local	nostic horizons: ochric Diagn. criteria: gleyic and stagnic prop. classification:
	LOCATION	: Ramsau Meridian : Latitude: Longitude: Altitude: (m.a.s.l.)
	GENERAL LANDFORM	(mm.yy) : Eisenhut/Umfer = 8,92
	PHYSIOGRAPHIC UN SLOPE Gradi POSITION OF SITE	IT : ent/aspect/form: 14 % S :
	LAND USE VEGETATION Landuse/veg	: Structure: etation remarks:
	PROFILE DESCRIPT	ION
920538	0 3- Ocm	5,0YR 1,7/1,0 moist; 5,0YR 2,0/1,0 dry;; needles, decomposed; fine to very fine weak crumb; many micro pores; highly porous; many fine roots throughout; abrupt smooth boundary to
920539	Ag O-7cm	10,0YR 1,7/1,0 moist; loamy sand,gravelly; fine to medium moderate platy fine to medium moderate angular blocky; common fine faint clear (10,0YR 5,0/1,0) and (5,0YR 4,0/4,0) mottles; common micro pores; moderately porous; common very fine roots throughout; abrupt smooth boundary to
920540	Bw 7-32cm	7,5YR 5,0/4,0 moist; sandy loam,gravelly; fine moderate subangular blocky; common micro pores; moderately porous; few very fine roots and few fine roots; clear smooth boundary to
920541	BUCU 32- 46cm	7 EVD E 0/4 0 maintelling families find under sterreiten blacken ander sterreiten s
	Diren DE 400m	few very fine roots; =
	REMARKS:	few very fine roots; =
	REMARKS: Geologie: Werfen	er Schiefer
	REMARKS: Geologie: Werfen Angaben zum Kalk	er Schiefer gehalt fehlen
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und	er Schiefer gehalt fehlen Bodentyp:
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und Österreich: O – BRD : O –	<pre>r,Six 3,076,0 moist; very gravelty; fine weak subangular blocky; common micro pores; moderately porol few very fine roots; = er Schiefer gehalt fehlen Bodentyp: AP = Bv = BvCv : pseudovergleyte Lockersedimentbraunerde ASw = Bv = BvCv : Stagnogley-Braunerde</pre>
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und Österreich: O – BRD : O –	<pre>r,Six 3,076,0 moist; very gravelty; fine weak subangular blocky; common micro pores; moderately porou few very fine roots; = er Schiefer gehalt fehlen Bodentyp: AP - Bv - BvCv : pseudovergleyte Lockersedimentbraunerde ASw - Bv - BvCv : Stagnogley-Braunerde</pre>
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und Österreich: O – BRD : O –	<pre>r,Six 3,076,0 moist; very gravelty; fine weak subangular blocky; common micro pores; moderately porol few very fine roots; = er Schiefer gehalt fehlen Bodentyp: AP - Bv - BvCv : pseudovergleyte Lockersedimentbraunerde ASw - Bv - BvCv : Stagnogley-Braunerde</pre>
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und Österreich: O – BRD : O –	r,Sik S,OFO,O moist.very gravelty; fine weak subangular blocky; common micro pores; moderately porol few very fine roots; = er Schiefer gehalt fehlen Bodentyp: AP - Bv - BvCv : pseudovergleyte Lockersedimentbraunerde ASw - Bv - BvCv : Stagnogley-Braunerde
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und Österreich: O – BRD : O –	r,Sik S,OF,O molst, very gravetty; fine weak subangutar blocky; common micro pores; moderately porol few very fine roots; = er Schiefer gehalt fehlen Bodentyp: AP - Bv - BvCv : pseudovergleyte Lockersedimentbraunerde ASw - Bv - BvCv : Stagnogley-Braunerde
	REMARKS: Geologie: Werfen Angaben zum Kalk Profilformel und Österreich: O – BRD : O –	<pre>r,JK 5,0/6,0 molst, very gravelty; fine weak subangular blocky; common micro pores; moderately porol few very fine roots; = er Schiefer gehalt fehlen Bodentyp: AP - Bv - BvCv : pseudovergleyte Lockersedimentbraunerde ASw - Bv - BvCv : Stagnogley-Braunerde</pre>

Gew. Fraktion 0408809 543 98.135 135 98.1150 1150.1150 789.3 188.5 144.2 272.6 370.4 370.9 796.6 412.2 207.4 181.7 121.0 507.5 507.5 507.5 65.0 103.0 119.7 406.9 264.4 455.1 126.3 150.7 291.6 498.6 Gew. ges. VOLUMEN 134 269 269 692 320 423 743 949 949 506 557 692 929 84. 84. 42. 403. 509. 191 361 382 509 127. 530. 2.660 3.500 2.670 .940 .850 SONDER 1.030 3.020 3.250 .860 .990 1.920 1.670 .790 .670 .860 720 500 410 뛰 ZN Eisenerz-Ramsau - Halde von Cu-Schlacke BB IN K_RFA 1.390 3.040 3.320 4.230 4.230 4.720 4.720 4.720 3.110 3.110 3.110 3.110 3.330 1.690 3.140 3.510 3.090 3.720 3.210 3.630 2.110 3.290 4.070 4.450 E_RFA 3.020 5.780 6.520 8.590 5.110 5.110 4.570 4.800 1.890 4.010 5.010 8.340 4.000 2.570 4.350 4.620 4.710 4.430 4.430 5.990 1.560 3.200 4.600 문 RFA 561 890 2470 5163 2847 78 78 78 152 239 277 6847 21300 3232 214 344 339 297 736 397 397 23 23 41 41 3 BA RFA 422 454 5445 904 651 324 589 289 Horizont bis 0.0 -17.0 -35.0 -35.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -27.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -27.0 -26.0 -27.0 -2 Horizont } 1.0 -17.0 -17.0 -52.0 -52.0 -52.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -26.0 -27.0 -2 zont (OE) Hori Bez. Oloh Ah Bv II II III Cv ofoh Ah BV II* II* AP BV CV C B I A B A B NR PR08_NF 920501 920502 920504 920504 920505 920505 920505 920514 920515 920516 920517 920518 920525 920526 920527 920528 920529 920530 920531 920538 920539 920540 920541 993-Mai-18 PKT_NR 920502 920515 920526 920539

records selected.

56

											As	As	Sb		
Prob_Nr	Horizont	Gew GFT	KGV	RFA	рН	SCN	CaCO3	ICP HE	a	ICP SM	Co Mo	Hg Te	Se TL	KW	Anmerkung
920501		+++	_	+	+		+	-	-						nicht volumsgerecht
920502		+++	-	+	+		+	+	-	+	+++	+++		-	nicht volumsgerecht
920503		+++	-	+	+		+	+	-	+	+++	+++		14	an anna 27 anna 📽 an chann an
920504		+++		+	+		+	+	-	+	+++	+++		-	
920505		+++	-	+	+		+	+	-	+	+++	+++		-	
920506		+++	-	+	+		+	+	-	+	+++	+++		222	
920507		+++	-	+	+		+	+	-	+	+++	+++		-	
920514		+++	-	÷	+		+	-	-	-				÷	nicht volumsgerecht
920515		+++	-	+	+		+	+	-	+	+++	+++		-	nicht volumsgerecht
920516		+++	-	+	+		+	(+)	+	+	+++	+++		-	
920517		+++		+	+	-	+	(+)	2	+	+++	+++		-	
920518		+++	-	+	+		+	+	-	+	+++	+++			
920525		+++	-	+	+	-	+	-	-	\sim				-	nicht volumsgerecht
920526		+++	-	+	+		+	+	\sim	-		+++			
920527		+++	-	+	+		+	+	-	+	+++	+++		-	
920528		+++	-	+	+		+	+	-	+	+++	+++			
920529		+++	-	+	+		+	+	-	+	+++	+++		-	
920530		+++	-	+	+		+	+	-	+	+++	+++		(-)	
920531		+++	-	+	+		+	+	-	+	+++	+++		-	
920538		+++		+	+		+	-	-	-				$\left - \right\rangle$	nicht volumsgerecht
920539		+++	-	+	+		+	+	-	+	+++	+++		-	nicht volumsgerecht
920540		+++	-	+	+	-	+	+	-	+	+++	+++		÷.	7 33
920541		+++	-	+	+		+	+	-	+	+++	+++		$\overline{\mathbf{T}}$	
920845		+	- 0 - -	+	-		-	-		-		+++	+++	-	Schlacke
920847		+	-	+	-		-	-	-	-		+++	+++	-	Schlacke
920849		+	-	+	-		-	-	~	-		+++		-	Boden / Aushub
920850		+	-	+	-		-	-	-	-		+++		-	Boden / Skelett
920851		+	-	+	-			-	-			+++		- 	Gestein
920852		+	-	+	-		-	-	-	-		+++		-	Gestein
920853		+	-	+			-	-	-	-		+++			Gestein

31 records selected.

LEGENDE:

+ ... Analytik von BVFA, vollständig (+) ... unvollständige Analytik (oder: pH-Wert von VA) - ... keine Analytik

e T								
Teil 0 Seit								
		λ						
/ Ramsau								
olatz Eisenerz	Lage							
Kupferschmelz	Anmerkung zu							
enproben vom								
s- und Schlach								
oden-, Gestein	zu Probe	umsgerecht umsgerecht	umsgerecht umsgerecht	msgerecht	msgerecht msgerecht		shub elett	
	bis Anmerkung	0.00 nicht volu -8.00 nicht volu 35.00 52.00 70.00 94.00	0.00 nicht volu -6.00 nicht volu 20.00 26.00 46.00	0.00 nicht vol ¹ -4.00 10.00 29.00 44.00 88.00	0.00 nicht volu -7.00 nicht volu 32.00 46.00	Schlacke Schlacke	Boden / Au Boden / Sh	Gestein Gestein Gestein Gestein
	non	1.00 		2.00 0.00 -4.00 -10.00 -29.00	3.00 0.00 -7.00 -32.00			
	Hor 1 zont OE	oloh Ah Bv II* III* Cv	ofoh Ah BV II* II*	AP AP AP	0 BV BVCv			
. 1993	Pkt-Code	920502 920502 920502 920502 920502 920502 920502	920515 920515 920515 920515 920515	920526 920526 920526 920526 920526 920526 920526	920539 920539 920539 920539	920845 920847	920849 920850	920851 920855 920858 920858
16. Jun	Prob_Nr	920501 920502 920503 920504 920506 920506	920514 920515 920516 920516 920517 920518	920525 920526 920527 920528 920528 920530	920538 920539 920540 920541	920845 920847	920849 920850	920851 920852 920858 920858

	e 1	MO_RFA	NN74047	70007	5255mm	Lunu	4 M	77	7777
	1 Seit	MN_RFA	.124 .307 1.448 1.874 .543 .253 .098	.161 .088 .735 1.378 1.378	.064 .055 .033 .033 .085 .085 .174 .174 .169	.075 .045 .129 .577	.123	.029	.015 .013 .052 .029
	Teil	MG_RFA	.55 .84 .9 .9 .89 .89 .89	.83 .97 1.14 .86 1.17		.53 .95 1.2 1.39	.87	.55	.56 .8
	2	K_RFA	1.39 3.04 3.52 4.23 4.46 4.72	1.99 3.11 2.99 3.33	1.69 3.14 3.72 3.72 3.21 3.63	2.11 3.29 4.07 4.45	.99	3.78 3.61	3.2 4.42 3.76 3.76
	CA DEA	GA_RFA	24 24 24 24 24 24 24	24 23 16 17	24 25 20 22 22 22 22 22	17 27 22 18	-10 22	21	17 34 27
		FE_KFA	3.02 5.78 6.52 8.59 4.57 4.57	1.89 4.01 5.01 8.34 4	2.57 4.35 4.71 4.71 4.26 5.99	1.56 3.2 4.6 10	23.47 8.23	3.16 3.72	3.28 3.71 3.69
	z / Ramsa c pcA	F_RFA	05 05 - 05 - 05	05 05 05 05	05 05 05 05	05 05 05	05	05	
	z Eisener	CU_RFA	561 890 2470 5163 2847 78 78 152	239 277 6847 21300 3232	214 339 297 736 397 1042	20 23 41	21300	418 371	456 16 -10
	chmelzplat	CR_RFA	63 69 69 67 67	59 58 58 58 58	70 72 55 65 65 65 65	47 65 61	10 56	64 65	58 98 87
	Kupferso	CO_RFA	23 23 23 23 23 23 23 23 23 23 23 23 23 2	12 24 28 13	6666658	12 15 20	37 20	13 13	6246
į	roben von	CL_RFA	.022 .013 .007 .007 .007	.017 .012 .007 .009	.027 .017 .009 .006 .008	.02 .012 .007 .005	.005	.008	005 .005 .005
	schlackenp carra	CA_RFA	.38 .23 .29 .31 .31 .31	.74 .38 2.21 6.24 .25	4. 16 16 15 15 15 15 15	.54 .04 .05	7.62 .2	.33	.23
	ins- und	BA_RFA	422 454 904 551 324 5324 289	413 344 583 583 383	436 345 341 357 351 351	260 241 301 301	166 286	270 384	348 506 367
	h-, Gestei	AL_RFA	3.49 7.1 7.88 7.2 9.56 9.33 8.11	3.45 6.78 7.59 8.54 7	2.88 5.78 8.05 6.59 8.43 9.85	1.99 7.21 9.87 9.23	2.73 6.99	9.25 8.28	8.41 12.1 8.34 10.24
(d }	Boder	H	3.9 3.6 5.3 5.5 5.5	4.4 6.6 6.9	3.7 3.7 3.9 4.2 4.2	3.7 3.5 4.6			
	TUDEC	9COLAI	4.01 2.65 2.11 11.82 .33 .33	4.22 3.44 3.08 .56	5.36 4.45 3.37 2.32 1.57 1.48 1.34	5.51 3.25 1.69 .97			
	CDANTTON	FRAKI JON	543 135.4 98 150.8 158.8 189.5 402.6	237.5 169.8 148.9 82.1 237	191.1 47 75.5 94.2 148 232.4 259.6	87.1 98.6 151.4 136.6			
	THAT'S THAT	GEU GESAMI G	789.3 144.2 272.6 300.4 310.9 796.6	412.2 207.4 181.7 121 507.5	324.3 65 103 119.7 406.9 264.4 455.1	126.3 150.7 291.6 498.6	84.6	116.6 79.7	123.6 112.1 42.3 597.1
	1993 Horizont	OE		th of the		A S S			
	16. Jun.	Prob_Nr	920501 920502 920503 920504 920505 1 920505 1 920505 1 920505	920514 0 920515 4 920516 E 920516 E 920517 I 920518 I	920525 A 920526 A 920527 A 920528 P 920529 I 920529 I 920530 B	920538 0 920539 A 920540 B 920541 B	920845 920847	920 849 920 850	920851 920852 920855 920858

	5													
	Seite													
	Teil 2													
		ZR_RFA	170 219 219 163 165 147	174 188 176 131 180	135 165 163 177 177 159	131 180 167 135	81 175	170	166 91 151 121					
		ZN_RFA	90 85 214 214 28 214 28 28	84 53 150 240 72	32 33 33 33 33 33 33 33 33 33 33 33 33 3	74 44 52	53	12 23	11 12 12					
		Y_RFA	22 34 35 35 35 35 35 35 35 35 35 35 35 35 35	22 30 60 43	14 20 38 38 26 26	21 30 -10	12	22 28	33 17 28 27					
	Ramsau	W_RFA				*:								
	senerz /	V_RFA	128 141 159 128 129 112 103	115 108 131 164 108	132 135 131 123 125 125	104 118 116 110	40	97 98	104 154 211 140					
	zplatz Ei	U_RFA												
	ferschmel	TI_RFA	. 449 . 563 . 552 . 552 . 563 . 523 . 523	419 484 489 411 411	.512 .575 .575 .575 .571 .571	.322 .544 .554 .483	.132	.514	.57 .64 .607 .656					
	n vom Kup	TH_RFA												
	ckenprobe	SR_RFA	50 144 60 57 58	52 52 54 52 54 55	48 55 57 57	43 59 68	192 66	47 68	44 65 58					
	und Schla	SI_RFA	16.5 24.6 23.9 25.2 26.7 26.7 26.7	16.8 23.8 23.9 17.6 23.56	15.3 21.2 24.6 22.6 26.8 28 26.2	10.9 23.2 26 23.2	12 23.72	28.6 26.3	29.2 26.1 27.1 25.5					
	esteins-	RFA S	135 136 129 154 163	134 130 97 125	143 136 154 152 152	84 115 164 167	51 170	144 162	151 242 151 215					
	Boden-, G	PB_RFA P	129 118 89 37 37 20	102 38 26 20	160 118 50 31 28 28	97 33 18	-10 26	17	13 20 11					
	_	P_RFA	.193 .139 .143 .155 .092 .093	.242 .206 .309 .844	.282 .206 .077 .077 .075 .075	.176 .143 .093 .116	.299	.059	.065 .033 .045 .074					
		VI_RFA	28 28 62 79 79 79	21 202 51	328 328 328 328 328 328 328 328 328 328	18 23 45	39 26	31 29	25 42 47					
		NB_RFA	15 15 25 25 19 15 26 19 15 26 19 15 26 19 16 19 16 10 10 10 10 10 10 10 10 10 10 10 10 10	-10 22 15 12 22	23 24 25 23 23	5885	-10 21	18 17	17 21 21					
		NA_RFA	.17 .25 .25 .29	.18 .23 .35 .35 .26	22255555	.13 .2 .2	.19	.32	05 .18 .68					
		i zont)E												
	1993	Hor	oloh Ah Bv II* III* Cv	ofoh Ah Bv I* II*	C B I A B A A B	0 BV BVCV								
	16. Jun	Prob Nr	920501 920502 920503 920504 920505 920505	920514 920515 920516 920517 920518	920525 920526 920527 920528 920530 920530	920538 920539 920540 920541	920845	920849 920850	920851 920852 920853 920858					
	-													
--	------------	---------------	------------------	------------------------------	----------------------------	----------------	------------	------------------------------------	-------------------------------	--------------	--------	----------------------------------	--	--
	Seite	2W_ICPSB	20.9	15.8 68.5 28.2 70.7	92.9	211.9 30.5	72 23.4	8.8 3.3 8.8 8.8	24.2 2.6 2.3					
	Teil 3	ICPSB CA	88.4	2.7 4. 7 5	24.9	1.5	79.3	84.4 67.5 49.1 30.4	130.9 52.8 8.9					
		NDER AL3W												
		ER H_SOI								3.2				
		TL_SOND		зð						1				
	-	SONDER								2				
	: / Ramsau	SONDER SE								57.1 38.1				
	z Eisenerz	IE_AAS SB	កំកុ	ក្កក្ក	ן איה (n n n n	è .3	ក្កក្ក	$\tilde{\omega}$	5 2	5 1	ក្តមក្ត		
	melzplat	SONDER	3.5	2.67 .94 .85	50.F	3.25	.99	1.67 .79 .86	5.5	.05 37.8	3.71	.45 .07 .14		
	upfersch	DER HG_S	.11	.19	.38	.04	.46	.32 39 .45	.52	6.5 87	9.6	2.4		
	en vom k	3 AS_SON	1 97	147	3 22 10	148	34	11 37 1 51	1 24	2	4 7			
	skenprob	CACO	111	i i i i	, 1999 1997	13.	1.17	i i i i i	1111					
	d Schlad	SONDER												
	eins- un	SC HUMUS												
	n-, Geste	s S												
	Boder	N_G												
		GES_GC												
		SONDER C												
		C_ORG_												
		R_SONDER												
		t c_AOI												
	1993	Horizor OE	oloh Ah 3v	14 111 1114	of oh	11 14 11	049	te te a	o ave avev					
	. 9 Jun.	rob_Nr	20502	220504 220505 220506	920507 920514 920515	20517	20525	20528 220528 220530 20530	20538 0 20539 1 20540 E	120845	120849	20851 20852 20853 20858		
			0.0		0.01		0.0.0	0.0.0.0	0.0.0.0	0.0	0.0			

Naturwissenschaftliche Untersuchungen vor Beginn der archäologischen Ausgrabung

	~																
	Seite																
	feil 4	ICPBA	7.6 3.7 1	10.2 1 .3	3.7 1.3 1.1	5.7 .8 .1											
	-	ICPBA ZN	459555 111	5,5,5,5, 	77777	555											
		ICPBA V	*****	2555 2555	0.5.5.5	8, <u>, , ,</u>											
		ICPBA PB	1.64	1.2	ญญ่ญญ่.	r. 9 9											
	msau	ICPBA NI	555555	2222		777											
	nerz / Ra	ICPBA MO	14.9 19.1 86.4 49.7 .2 1.8	2.1 1.3 5.6 15.7	8.1 14 6.4 27.2	5.5.											
	latz Eise	ICPBA CU	<u> </u>	2222	55555	222											
	rschmelzp	LICPRU AS_ICPBA CD_ICPBA CO_ICPBA CR	0.22222		2,2,4,4,4												
	vom Kupfe		LICPRU AS_ICPBA CD_ICPBA CC	LICPRU AS_ICPBA CD_ICPBA CO		5555		111									
	enproben					7777		777									
	nd Schlack				LICPRU AS	LICPRU AS	U_ICPRU AS	U_ICPRU AS	H_ICPRU AS	LICPRU AS	N_ICPRU A		188.3				
	steins- ur	ICPSB BA2N	844MMU		1.3 1.3 1.3	1.2 2.5											
	3oden-, Ge	CPSB NA14	12.4 14.8 16.2 8.9 1.3	7.0	7.4 2.3 2.6 2.6	1.2											
	-	B MN2W_I	0 0 0 4 N N	OML4	5 7 10 7 10 10												
		162W_ICPS	4.0.0. V.V.	0.4 M		.1											
		U_ICPSB	2.6 1.1 1.2	2.5 .9 2.1	4.3 1.6 .7 2.8	1.9 .7 .9											
		LICPSB K1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15.8	25 4.4 .2 .2	25.3 .6 .4											
		ont FE3															
	. 1993	Horiz	oloh Ah Bv I:* III* Cv Cv	ofoh Ah BV IX II*	AP AP CV BI #	o BV BVCV											
	l6. Jun	rob_Nr	20501 220502 220503 220505 220505 220505 220505	20514 20515 20516 20516 20517 20518	20525 20526 20526 20528 20528 20529 20530 20531	20538 20539 20540 20540	20845	20849	20851 20852 20853 20853 20858								

Bodengeochemie Eisenerzer Ramsau

Beilage 4/2 Probenpunkt 920515 pH- und Elementverteilungen innerhalb des Bodenprofiles

Geochemische Untersuchungstechnik - Ligenongsdehte an - Ligenongsdehte vie - Ligenongsdehte und pH - Ligenongsdehte u	—— CU_RFA Massebezug — — CU_RFA Volumsbezug fein CU_RFA Volumsbezug gesamt	0.0 17040.0 21300.0		br 18-MAY-83 11/217 Eisenerz-Ramsau
Geochemische Unters — Logenogadene ges — Logenogadene ges — Logenogadene ges — Logenogadene ges De D 10 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Bodenprofil: — ag20515 – Cu Regleich Massenbezug(mg/kg) <u>ag20515 – Cu</u> <u>ag20515 – Cu</u> <u>ag20515 – Cu</u> <u>ag20515 – Cu</u> <u>ag20515 – Cu</u> <u>ag20515 – Cu</u> <u>ag20515 – Cu</u> <u>ag20516 – 6</u> <u>ag20516 – 6</u> <u>ag20516 – 6</u> <u>ag20518 – 6</u>	uchungstechnik -RFA _{ppm} zu Volumsbezug(mg/1)	0.0 4260.0 8520.0 1278		GEOTECH44K-H
a -		Lagerungsdichte und pH .0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	Ah 920574 0.1 Ah 920515 -6 P 920576 -6 P 920577 -26 P 920577 -26 P 920578 -46	

Bodengeochemie Eisenerzer Ramsau Beilage 4/3 Probenpunkt 920526 pH- und Elementverteilungen innerhalb des Bodenprofiles

- Logerungsdichte « 2mm - Logerungsdichte « 2mm - Die Vergleich Massenbezug(mg/kg) zu Volumsbezug(mg/l)	Lagerungsdichte und pH 0.1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Bodenprofil: 0.1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Bodenprofil:	
Hd — Fogerungsd	0.0 1.0 2.0 3	

Bodengeochemie Eisenerzer Ramsau Beilage 4/4 Probenpunkt 4/4 pH- und Elementverteilungen innerhalb des Bodenprofiles

tchungstechnik RFA ppm u Volumsbezug(mg/l) a 4260.0 8520.0 12780.0 17040.0 21300.0	GEOTECHNK-Hbr 18-MAY-33 112217 Esenerz-Rameau
Geochemische Untersu Lagerungsdichte ges Lagerungsdichte ges Lagerungsdichte e 2mm	

